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Sociometric Matrices

Social Networks as Graphs
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Sociometric Matrices

Social Networks as Graphs
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Sociometric Matrices
Degree of a Vertex

Degree: The degree of vertex k is the number of connections (links)
it has to other vertices in the network.

Directed Graph Undirected Graph
A B A B
D C D © C

In-degree: In a directed graph, the number of incoming edges
Out-degree: In a directed graph, the number of outgoing edges



Sociometric Matrices
Degree of a Vertex - Directed Graph
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Sociometric Matrices
Degree of a Vertex - Undirected Graph
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For an undirected graph,
degree = row sum = column sum



Sociometric Matrices
Degree of a Vertex - Weighted, Undirected Graph

Weighted Graph Unweighted Multigraph
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Degree Distributions
(Bernoulli) Random Graph Model

Consider a set of nodes N={1, ..., n}
Each link forms with independent probability p

* Any network with m links on n nodes forms with probability
n(n—l)_

p"(1-p) 2

* Probability that any given node i has exactly d links is

[n; 1]p“”(l— p)

e Fraction of nodes with d links is approximated by a Poisson
distribution —(n Dp ((I’l 1)p)

d!




Degree Distributions
Scale-Free Networks

However, most observed real-world networks (the
internet, neural networks, some social networks, etc)
have degree distributions that follow a power law.

The fraction P(k) of vertices having k connections to
other vertices is approximately

P(k)~ k™’ 2<y<3
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Degree Distributions

Random vs. Scale-Free Networks

Random Network Scale-Free Network

Bell Curve Power Law Distribution
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Degree Distributions

Random vs. Scale-Free Networks

- Random Network Scale-Free Network




Matrix Algebra Review

Matrix Multiplication
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Matrix Multiplication - Examples

(7 9 2)
4 9 6

(3 3 5)
3 9 4

5 6 0

4 5 7,



Matrix Algebra Review

Matrix Multiplication - Examples

(7 9 2Y(3 3 5)
4 9 63 9 4|=9
5 6 0)\4 5 7

(56 112 85
Ans.| 63 123 98
33 69 49,




Matrix Algebra Review

Boolean Arithmetic

0+0=0 O0x0=0
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Matrix Algebra Review

Boolean Matrix Multiplication
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Matrix Algebra Review
Boolean Matrix Multiplication
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1 0 1[0 0 0|=2
0 1 0){1 0 0

(0 1 0)
Ans|1 1 O
\0 0 0)




Communication Networks
Directed Graphs
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Communication Networks
Dominance Relations

Dominance Relation: For each pair 7, j, with i # j, either A, > A ; or A ;= A,
but not both; that is, in every pair of individuals, there is exactly one
who is dominant.
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Power

Dominance Matrices

One-Stage Two-Stage

(0 1 1 1) (0 0 1 2)

001 1 , |0 0 0 1
[ = ) =

00 0 1 0000

Power: the total number of one-stage and two-stage
dominances that an individual can exert. The power of
individual A, is the sum of the entries in the ith row of

the matrix 5
S=D+D



Power
Example - Athletic Contest

- The results of a round-robin athletic contest are shown
below. Using the power definition above, rank the four
teams in terms of their athletic dominance.

Team A beats teams B and D.
Team B beats team C.
Team C beats team A.
Team D beats teams C and B.



