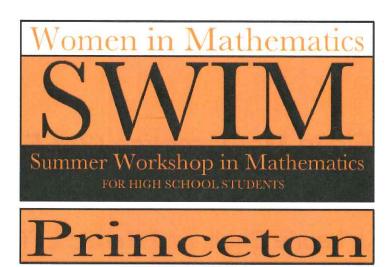
Introduction to Abstract Algebra

with Applications to Social Systems



Course II
Lecture
Notes
2 of 7

Princeton SWIM 2010

Instructor: Taniecea A. Arceneaux

Teaching Assistants: Sarah Trebat-Leder and Amy Zhou

Course Reference

Kemeny, Snell, Thompson

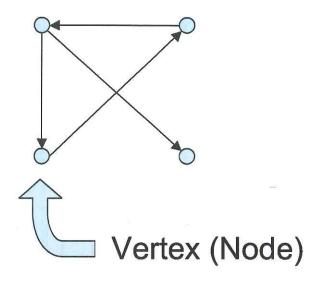
Introduction to Finite Mathematics (3rd Edition)

(Sections 3.12, 8.1, 8.2, 8.4, 8.5)

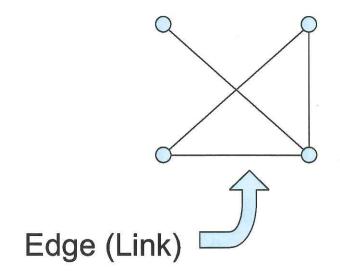
John G. Kemeny, J. Laurie Snell, and Gerald L. Thompson

Social Networks as Graphs

Directed Graph

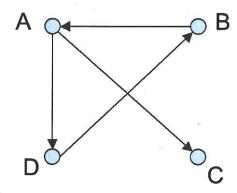


Undirected Graph



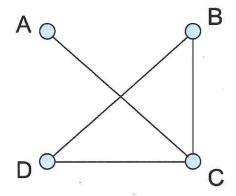
Social Networks as Graphs

Directed Graph



$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

Undirected Graph

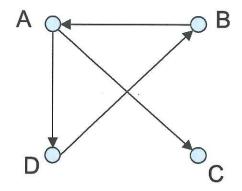


$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

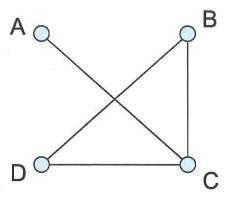
Degree of a Vertex

Degree: The degree of vertex k is the number of connections (links) it has to other vertices in the network.

Directed Graph

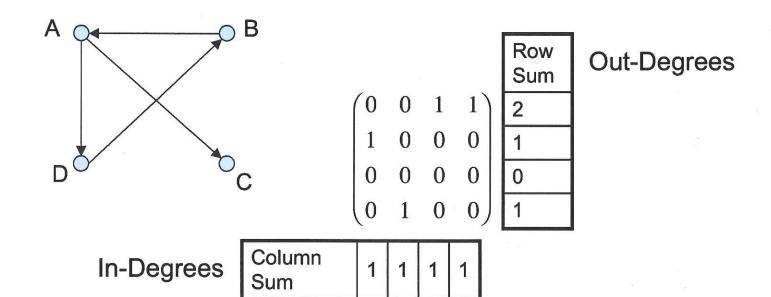


Undirected Graph

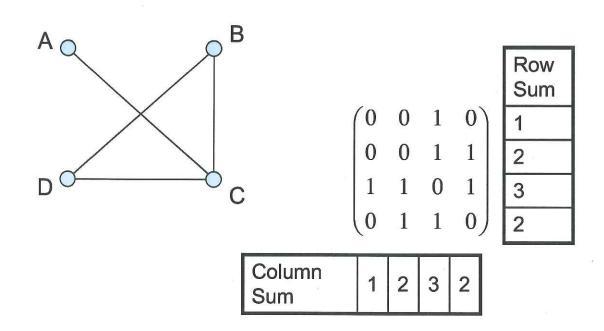


In-degree: In a directed graph, the number of incoming edges Out-degree: In a directed graph, the number of outgoing edges

Degree of a Vertex - Directed Graph



Degree of a Vertex - Undirected Graph

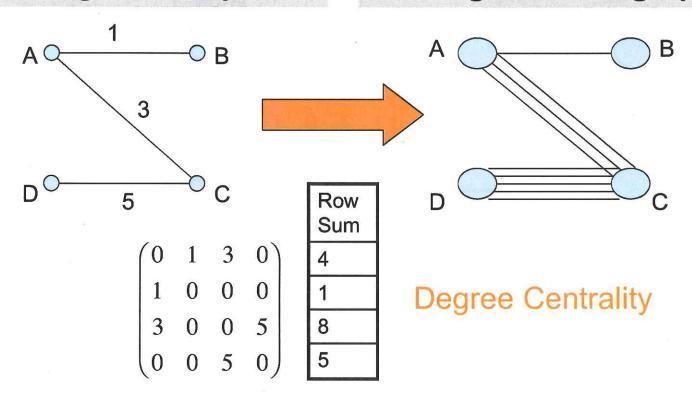


For an undirected graph, degree = row sum = column sum

Degree of a Vertex - Weighted, Undirected Graph

Weighted Graph

Unweighted Multigraph



(Bernoulli) Random Graph Model

Consider a set of nodes $N = \{1, \dots, n\}$

Each link forms with independent probability p

Any network with m links on n nodes forms with probability

$$p^m \left(1-p\right)^{\frac{n(n-1)}{2}-m}$$

• Probability that any given node i has exactly d links is

$$\binom{n-1}{d}p^d\left(1-p\right)^{n-1-d}$$

• Fraction of nodes with d links is approximated by a Poisson distribution $e^{-(n-1)p} \left((n-1)p \right)^d$

0

Scale-Free Networks

However, most observed real-world networks (the internet, neural networks, some social networks, etc) have degree distributions that follow a power law.

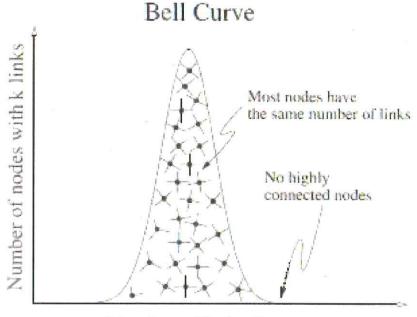
The fraction P(k) of vertices having k connections to other vertices is approximately

$$P(k) \sim k^{-\gamma} \qquad 2 < \gamma < 3$$

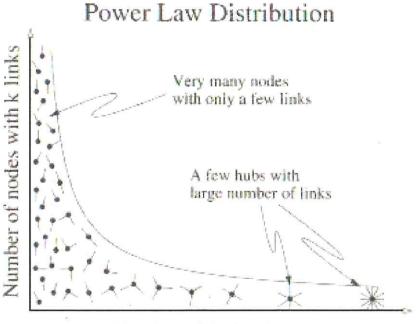
Random vs. Scale-Free Networks

Random Network

Scale-Free Network



Number of links (k)

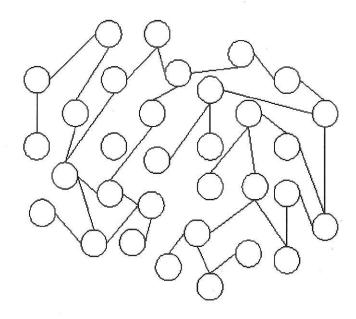


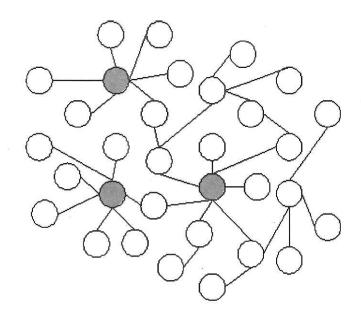
Number of links (k)

Random vs. Scale-Free Networks

Random Network

Scale-Free Network





Matrix Multiplication

$$AB = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{pmatrix}$$

NOT Commutative $AB \neq BA$

Matrix Multiplication - Examples

$$\begin{pmatrix} 7 & 9 & 2 \\ 4 & 9 & 6 \\ 5 & 6 & 0 \end{pmatrix} \begin{pmatrix} 3 & 3 & 5 \\ 3 & 9 & 4 \\ 4 & 5 & 7 \end{pmatrix} = ?$$

Matrix Multiplication - Examples

$$\begin{pmatrix} 7 & 9 & 2 \\ 4 & 9 & 6 \\ 5 & 6 & 0 \end{pmatrix} \begin{pmatrix} 3 & 3 & 5 \\ 3 & 9 & 4 \\ 4 & 5 & 7 \end{pmatrix} = ?$$

Ans.
$$\begin{pmatrix} 56 & 112 & 85 \\ 63 & 123 & 98 \\ 33 & 69 & 49 \end{pmatrix}$$

Boolean Arithmetic

$$0 + 0 = 0$$

$$0+1=1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

Boolean Matrix Multiplication

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = ?$$

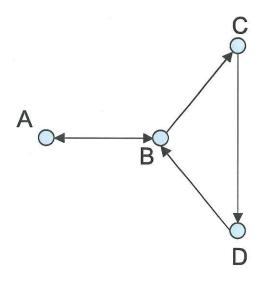
Boolean Matrix Multiplication

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = ?$$

Ans.
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Communication Networks

Directed Graphs



$$C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

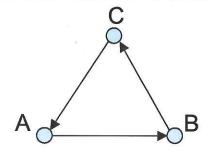
For all i, $c_{ii} = 0$.

Communication Networks

Dominance Relations

Dominance Relation: For each pair i, j, with $i \neq j$, either $A_i \rightarrow A_j$ or $A_j \rightarrow A_i$, but not both; that is, in every pair of individuals, there is exactly one who is dominant.

Tournaments



$$D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} NOT \\ Symmetric \end{array} \qquad D = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Power

Dominance Matrices

One-Stage

$$D = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Two-Stage

$$D^2 = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Power: the total number of one-stage and two-stage dominances that an individual can exert. The power of individual A_i is the sum of the entries in the *i*th row of the matrix

$$S = D + D^2$$

Power

Example - Athletic Contest

The results of a round-robin athletic contest are shown below. Using the power definition above, rank the four teams in terms of their athletic dominance.

Team A beats teams B and D.

Team B beats team C.

Team C beats team A.

Team D beats teams C and B.